LatihanSoal Menentukan Persamaan Garis Melalui Gradien dan Dua Titik. Pertama. kita tentukan dahulu gradien garis tersebut. Karena sejajar, maka gradien yang kita gunakan ke dalam rumus adalah sama. Kemudian subtitusikan nilai gradien dan titik yaitu x1 dan y1 ke dalam rumus mencari persamaan gradien. Terakhir, hitung dan akhirnya kita
Kemiringan garis adalah ukuran kecuraman dan arahnya. Ini didefinisikan sebagai perubahan koordinat y ke perubahan koordinat x garis itu. Itu dilambangkan dengan simbol m. Jika dua titik x 1 , y 1 dan x 2 , y 2 dihubungkan oleh garis lurus pada kurva y = fx, kemiringannya ditentukan oleh rasio selisih koordinat y terhadap x- selisih koordinat Bagaimana cara mencari persamaan garis dari dua titik? Bentuk dua titik digunakan untuk mencari persamaan garis yang melalui dua titik. Formulanya diberikan oleh, y β y 1 = m x β x 1 atau di mana, m adalah kemiringan garis, x 1 , y 1 dan x 2 , y 2 adalah dua titik yang dilalui garis, x, y adalah sembarang titik pada garis. Penurunan Pertimbangkan garis dengan dua titik tetap B x 1 , y 1 dan C x 2 , y 2 . Titik lain A x, y adalah sembarang titik pada garis. Karena titik A, B, dan C bersamaan, kemiringan AC harus sama dengan BC. Dengan menggunakan rumus kemiringan yang kita dapatkan, y β y 1 / x β x 1 = y 2 β y 1 / x 2 β x 1 Mengalikan kedua sisi dengan x β x 1 kita dapatkan, Ini mendapatkan rumus untuk bentuk dua titik dari sebuah garis. Contoh Soal Soal 1. Temukan persamaan garis yang melalui titik 2, 4 dan -1, 2. Penyelesaian Kita punya, x 1 , y 1 = 2, 4 x 2 , y 2 = -1, 2 Temukan kemiringan garis. m = 2 β 4/-1 β 2 = -2/-3 = 2/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 4 = 2/3 x β 2 3y β 12 = 2 x β 2 3y β 12 = 2x β 4 2x β 3y + 8 = 0 Soal 2. Temukan persamaan garis yang melalui titik 4, 5 dan 3, 1. Penyelesaian Kita punya, x 1 , y 1 = 4, 5 x 2 , y 2 = 3, 1 Temukan kemiringan garis. m = 1 β 5/3 β 4 = -4/-1 = 4 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 5 = 4 x β 4 y β 5 = 4x β 16 4x β y β 11 = 0 Soal 3. Temukan persamaan garis yang melalui titik 2, 1 dan 4, 0. Penyelesaian Kita punya, x 1 , y 1 = 2, 1 x 2 , y 2 = 4, 0 Temukan kemiringan garis. m = 0 β 1/4 β 2 = -1/2 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 1 = -1/2 x β 2 2y β 2 = 2 β x x + 2y β 4 = 0 Soal 4. Temukan titik potong y dari persamaan garis yang melalui titik 3, 5 dan 8, 7. Penyelesaian Kita punya, x 1 , y 1 = 3, 5 x 2 , y 2 = 8, 7 Temukan kemiringan garis. m = 7 β 5/8 β 3 = 2/5 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 5 = 2/5 x β 3 5y β 25 = 2x β 6 2x β 5y + 19 = 0 Letakkan x = 0 untuk mendapatkan perpotongan y. => 2 0 β 5y + 19 = 0 => 5 tahun = 19 => y = 19/5 Soal 5. Temukan titik potong x dari persamaan garis yang melalui titik 4, 8 dan 1, 3. Penyelesaian Kita punya, x 1 , y 1 = 4, 8 x 2 , y 2 = 1, 3 Temukan kemiringan garis. m = 3 β 8/1 β 4 = -5/-3 = 5/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 8 = 5/3 x β 4 3y β 24 = 5x β 20 5x β 3y + 4 = 0 Masukkan y = 0 untuk mendapatkan titik potong x. => 5x β 3 0 + 4 = 0 => 5x + 4 = 0 => x = -4/5 Soal 6. Temukan kemiringan garis yang melalui titik 2, 7 dan -4, 5. Penyelesaian Kita punya, x, y = 2, 7 x 1 , y 1 = -4, 5 Dengan menggunakan rumus yang kita dapatkan, y β y 1 = m x β x 1 => 7 β 5 = m 2 β -4 => 2 = m 2 + 4 => 6m = 2 => m = 1/3 Soal 7. Temukan kemiringan garis yang melalui titik 4, -5 dan 6, 7. Penyelesaian Kita punya, x, y = 4, -5 x 1 , y 1 = 6, 7 Dengan menggunakan rumus yang kita dapatkan, y β y 1 = m x β x 1 => -5 β 7 = m 4 β 6 => -12 = m -2 => -2m = -12 => m = 6 SistemPersamaan Linear Dua Variabel. Persamaan linear yang rumit, seperti di sebut di atas, bisa ditulis dengan menggunakan hukum aljabar agar menjadi bentuk yang lebih sederhana. Seperti contoh, huruf besar di persamaan merupakan konstanta, dan x dan y adalah variabelnya. di mana m merupakan gradien dari garis persamaan, dan titikPada garis y = mx, m merupakan gradien yang besarnya adalah m=yx . Sekarang, ayo perhatikan garis g pada gambar berikut. Pada gambar tersebut, dari titik A ke titik B terdapat suatu perubahan secara tegak sebesar y2 β y1 dan perubahan secara mendatar sebesar x2 β x1. Ini menunjukkan garis g yang melalui titik Ax1, y1 dan Bx2, y2 memiliki kemiringan atau gradien sebesar m=y2βy1x2βx1. Pemahamanmu tentang gradien dapat digunakan untuk mempelajari topik berikut ini. Pada bagian sebelumnya, kamu telah mengetahui bahwa suatu garis yang melalui titik Ax1, y1 dan Bx2, y2 memiliki gradien m=y2βy1x2βx1 . Pada topik sebelumnya, kamu pun telah mempelajari persamaan garis yang melalui titik x1, y1 dan bergradien madalah y β y1 = mx β x1. Dengan mensubstitusi nilai m ke persamaan tersebut, kamu akan mendapatkan yβy1=y2βy1x2βx1xβx1 βyβy1y2βy1=xβx1x2βx1 Dapat disimpulkan bahwa Contoh Ayo, tentukan persamaan garis yang melalui titik 4, 0 dan 0, -2. Jawab Persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah sebagai berikut. yβ0β2β0=xβ40β4βyβ2=xβ4β4βy=β2β4xβ4βy=12xβ4βy=12xβ2βxβ2yβ4=0 Jadi, persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah x β 2y β 4 = 0.Diketahuibahwa persamaan garis lurus tersebut melalui dua titik yaitu titik (0,8) dan (- 6, 0). Sehingga untuk mendapatkan persamaan garis lurus seperti pada gambar di atas, sobat idschool hanya perlu substitusi nilai dua titik tersebut sebagai (x 1 , y 1 ) dan (x 2 , y 2 ) pada persamaan garis lurus yang melalui dua titik. Setiap garis lurus yang diletakkan pada bidang koordinat Kartesius pasti memiliki suatu properti unik yang disebut sebagai persamaan equation, yaitu suatu ekspresi aljabar dengan dua ruas yang terhubungkan oleh tanda sama dengan =. Persamaan garis lurus linear equation sinonim dengan persamaan linear. Ciri-cirinya adalah setiap variabel yang muncul memiliki pangkat tertinggi 1 satu tanpa memuat perkalian antarvariabel. Berikut telah diberikan contoh dan noncontoh persamaan garis lurus. $$\begin{array}{cc} \hline \text{Contoh} & \text{Noncontoh} \\ \hline y = 3x + 9 & y = 3x^2 + 9 \\ 3x-2y = \sqrt7 & 3x-2\sqrt{y} = 7 \\ 9x = 10 & xy = 4 \\ \hline \end{array}$$Ada fakta menarik yang dapat diulas ketika membahas garis lurus pada bidang koordinat Kartesius, yaitu setiap dua titik berbeda dapat dibuat garis lurus. Dengan kata lain, untuk menggambar garis lurus, kita hanya perlu dua titik, kemudian menghubungkannya. Persamaan garis lurus umumnya berbentuk $ax + by + c = 0$ atau $y = mx + c$ dengan $m$ = gradien atau $ax + by = d.$ Perhatikan gambar berikut. Gambar di atas menunjukkan garis lurus dengan persamaan $ax + by + c = 0$ yang melalui dua titik, yaitu titik biru dengan koordinat $x_1, y_1$ dan titik merah dengan koordinat $x_2, y_2.$ Nah, yang menjadi pertanyaan adalah bagaimana cara mencari persamaan tersebut menentukan nilai $a, b, c$? Mungkin para guru di kelas sudah memberitahu dan menjelaskan bahwa persamaan garis lurus yang melalui dua titik tertentu, misalnya $x_1, y_1$ dan $x_2, y_2$ adalah $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Selanjutnya, kita tinggal melakukan βkali silangβ dan sedikit perhitungan aljabar. Oleh karena itu, kita sebut saja cara ini dengan metode aljabar. Baca Soal dan Pembahasan β Gradien dan Persamaan Garis Lurus Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 2, 3$ dan $x_2, y_2 = 5, 2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{2-3} & = \dfrac{x-2}{5-2} \\ \dfrac{y-3}{-1} & = \dfrac{x-2}{3} \\ 3y-3 & = -x-2 \\ 3y-9 & = -x+2 \\ x+3y & = 11 \end{aligned}$$Jadi, persamaan garisnya adalah $x+3y=11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = -1, 3$ dan $x_2, y_2 = 3, -4.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{-4-3} & = \dfrac{x-1}{3-1} \\ \dfrac{y-3}{-7} & = \dfrac{x+1}{4} \\ 4y-3 & = -7x+1 \\ 4y-12 & = -7x-7 \\ 7x+4y & = 5 \end{aligned}$$Jadi, persamaan garisnya adalah $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 3, 0$ dan $x_2, y_2 = -1, -2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-0}{-2-0} & = \dfrac{x-3}{-1-3} \\ \dfrac{y}{-2} & = \dfrac{x-3}{-4} \\ \cancelto{2}{-4}y & = \cancel{-2}x-3 \\ 2y & = x-3 \\ x-2y & = 3 \end{aligned}$$Jadi, persamaan garisnya adalah $x-2y = 3.$ Bagi orang yang baru mulai mempelajari aljabar atau belum menguasai aljabar dengan baik, langkah pengerjaan yang ditunjukkan di atas mungkin akan terasa sulit dan membingungkan. Berdasarkan pengalaman pribadi, saya sendiri sering menjadi saksi bahwa banyak siswa setingkat SMP kelas 8 ke atas yang kesulitan melakukan operasi aljabar untuk menentukan persamaan garis lurus yang melalui dua titik seperti ini. Usut punya usut, ternyata ada cara lain yang βkelihatannyaβ lebih menyenangkan mata dibandingkan cara di atas. Kita bakal sebut ini sebagai metode skematik karena perhitungannya nanti memang menggunakan semacam skema. Perhatikan kembali rumus sebelumnya. $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Apabila kita menerapkan operasi aljabar pada persamaan tersebut, kita akan peroleh persamaan lain yang ternyata memunculkan ide baru tanpa melibatkan perhitungan aljabar yang sulit. $$\begin{aligned} y-y_1x_2-x_1 & = x-x_1y_2-y_1 \\ x_2y-x_1y-x_2y_1+\cancel{x_1y_1} & = xy_2-xy_1-x_1y_2+\cancel{x_1y_1} \\ x_2-x_1y & = y_2-y_1x + x_2y_1-x_1y_2 \end{aligned}$$Persamaan terakhirlah yang menjadi asal muasal munculnya metode skematik seperti berikut. Setelah dikurangi, langkah terakhir adalah tinggal menyisipkan variabel $y$, tanda sama dengan, dan variabel $x$ sehingga persamaannya menjadi $$\boxed{x_1-x_2\color{red}{y =} y_1-y_2\color{red}{x} + x_1y_2-x_2y_1}$$Masih bingung? Perhatikan beberapa contoh berikut supaya lebih paham. Saya menunggu kalimat βOh, begitu rupanya!β. Quote by Napoleon Hill Most great people have attained their greatest success just one step beyond their greatest failure. Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-3y = x-11$ atau dapat disusun menjadi $x+3y = 11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-4y=7x-5$ atau dapat disusun menjadi $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y = 2x-6$ atau dapat disederhanakan dan disusun menjadi $x-2y=3.$ Contoh 4 Tentukan persamaan garis lurus yang melalui titik $10, -1$ dan $-1, 10.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $11y = -11x + 99$ atau dapat disederhanakan dan disusun menjadi $x+y=9.$ Contoh 5 Tentukan persamaan garis lurus yang melalui titik $4, 7$ dan $-2, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $6y = 10x + 2$ atau dapat disederhanakan dan disusun menjadi $5x-3y=-1.$ Contoh 6 Tentukan persamaan garis lurus yang melalui titik $0, 0$ dan $-4, -7.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y=7x$ atau dapat disusun menjadi $7x-4y=0.$ Contoh 7 Tentukan persamaan garis lurus yang melalui titik $3, 5$ dan $-9, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $12y = 8x + 36$ atau dapat disederhanakan dan disusun menjadi $2x-3y=-9.$ Contoh 8 Tentukan persamaan garis lurus yang melalui titik $7, -3$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $10y = -x-23$ atau dapat disusun menjadi $x+10y=-23.$ Contoh 9 Tentukan persamaan garis lurus yang melalui titik $-1, -4$ dan $7, -5.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-8y = x + 33$ atau dapat disusun menjadi $x + 8y = -33.$ Contoh 10 Tentukan persamaan garis lurus yang melalui titik $-3, -4$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $0y = -2x-6$ atau dapat disederhanakan dan disusun menjadi $x=-3.$ Bagaimana? Metode manakah yang lebih enak untuk dipakai? Semuanya tergantung selera masing-masing, tetapi intinya kita tahu bahwa kreativitas dan rasa βkepoβ kita terhadap rumus yang lazim ternyata menghasilkan sesuatu yang βmempermudahβ kita, sama seperti penggunaan mnemonik dalam proses menghafal. Karenaada dua bentuk persamaan garis yaitu bentuk eksplisit y = mx + c dan bentuk implisit ax + by = c, kita akan menentukan gradien berdasarkan dua bentuk tersebut. jika suatu persamaan garis belum dinyatakan ke dalam salah satu bentuk tersebut maka kita perlu mengubahnya lebih dahulu. Untuk menentukan gradien garis dengan persamaan y = mx +c β Garis lurus biasanya melewati dua titik pada koordinat kartesius. Bagaimana cara menemukan persamaan garis yang melalui dua titik? Untuk mengetahuinya, berikut adalah soal dan jawaban mencari persamaan garis yang melalui dua titik! Contoh soal 1 Carilah persamaan-persamaan garis yang melalui pasangan titik-titik berikut. 2, 3, 4, 7 β3, 11, 4, β10 Jawaban Misalkan 2, 3 adalah x1, y1 dan 4, 7 adalah x2, y2. Untuk menentukan persamaan garisnya, terlebih dahulu kita harus mencari nilai kemiringannya a.a = y2 β y1/x2 β x1 = 7 β 3/4 β 2 = 4/2 = 2Setelah mengetahui nilai a, kita harus mencari nilai b-nya. Caranya adalah dengan memasukkan nilai x1 dan y1 ke dalam bentuk umum fungsi = 1/2x + b3 = Β½ 2 + b3 = bSehingga, persamaan garisnya adalah y = 2x + 3. Misalkan β3, 11 adalah x1, y1 dan 4, β10 adalah x2, y2.a = y2 β y1/x2 β x1 = -10 β 11/4 + 3 = -21/7 = -3y = ax + by = -3x + b11 = -3 -3 + b11 = 9 + bb = 11 β 9 = 2Sehingga, persamaan garis yang melewati titik β3, 11, 4, β10 adalah y = -3x + 2. Baca juga Soal dan Jawaban Menemukan Persamaan Garis Contoh soal 2 Carilah persamaan garis yang melalui titik β2, 4 dan titik 5, β3. Jawaban -2, 4 = x1, y15, -3 = x2, y2 Mencari nilai aa = y2 β y1/x2 β x1 = -3 β 4/5 + 2 = -7/7 = -1 34.2 Menentukan kemiringan garis jika diketahui garis melalui titik pusat dan satu titik 3.4.3 Menentukan kemiringan garis jika diketahui garis melalui dua titik (x 1, y 1 dan x 2, y 2) 3.4.4 Menentukan persamaan garis yang diketahui satu titik dan kemiringan garis 3.4.5 Menentukan persamaan garis yang diketahui dua titik